
Software System Design and Implementation

The University of New South Wales

School of Computer Science and Engineering

Sydney, Australia

Gabriele Keller

COMP3141 18s1

Functors, Applicative and Monads

Data constructors revisited

 data Point = Point Float Float

 Point :: Float -> Float -> Point

 Point 0.0 1.25 :: Point

Data constructors revisited

 data Shape
 = Circle Point Float
 | Path [Point]

 Circle :: Point -> Float -> Shape
 Path :: [Point] -> Shape

Data constructors revisited

 data Tree a
 = Leaf
 | Node a (Tree a) (Tree a)

 Leaf :: Tree a
 Node :: a -> (Tree a) -> (Tree a) -> (Tree a)

Data constructors revisited

 data Either a b
 = Left a
 | Right b

 Left :: a -> Either a b
 Right :: b -> Either a b

Data constructors revisited

 data Maybe a
 = Nothing
 | Just a

 Nothing :: Maybe a
 Just :: a -> Maybe a

Type Constructors

• Data constructors map values to values:

True

False

Just True

Just False

Just :: a -> Maybe a

Bool
Maybe Bool

types a sets of values

Maybe :: * -> *

Type Constructors

• Type constructor map types to type:

Maybe

Bool

Maybe Int

Char

Float

…

Maybe Bool

Maybe (Maybe Int)

Maybe Char

Maybe Float
…

kinds are sets of types* *

Kinds

[Int]

Maybe Bool

Char

Float

Bool
…

*

Maybe

Tree []

…

* -> *
(,)

* -> * -> *

Either ->

Generalising map

• map on lists:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

• map for other unary type constructors:

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f Leaf = Leaf
treeMap f (Node x leftSubtree rightSubtree)
 = Node f x (treeMap f leftSubtree)
 (treeMap f rightSubtree)

Generalising map

• map on the Maybe type:

maybeMap :: (a -> b) -> Maybe a -> Maybe b
maybeMap f Nothing = Nothing
maybeMap f (Just x) = Just (f x)

 fmap :: (a -> b) -> f a -> f b

Functors

• We have seen how type classes can be used to group types according to the
operations supported on their values:

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

instance Eq Bool where
 (==) True True = True
 (==) False False = True
 (==) _ _ = False
 (/=) b1 b2 = not (b1 == b2)

a :: *

Functors

• We can also use type classes to group type constructors:

class Functor f where
 fmap :: (a -> b) -> f a -> f b

instance Functor Tree where
 fmap f Leaf = Leaf
 fmap f (Node a t1 t2)
 = Node (f a) (fmap f t1) (fmap f t2)

f:: * -> *

What properties should map have?

• Should leave the structure intact:

 fmap id xs == xs

 fmap (f . g) xs == ((fmap f) . (fmap g)) xs

• These properties are not enforced by the compiler

- it’s the programmers responsibility to ensure

- these are quickcheckable properties, but proofs are often straight forward

- these abstractions are very useful to understand code

Applicative

• Applicative are functors with two additional operations:

 class Functor f => Applicative f where

 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

http://support.hfm.io/1.6/api/base-4.9.1.0/Prelude.html#t:Functor

Applicative

• Properties

 pure id <*> v == v

 pure (.) <*> u <*> v <*> w == u <*> (v <*> w)

 pure f <*> pure x == pure (f x)

 u <*> pure y == pure ($ y) <*> u

https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Data-Function.html#v:id
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Data-Function.html#v:-36-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-

Monads

• Monads

 class Applicative m => Monad m where

 (>>=) :: m a -> (a -> m b) -> m b
 return :: a -> m a

https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#t:Applicative

Monads

• Properties

 return a >>= k == k a

 m >>= return == m

 m >>= (\x -> k x >>= h) == (m >>= k) >>= h

https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:return
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:return
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:-62--62--61-

Monads

• Do-notation:

incMaybe :: Num a => Maybe a -> Maybe a
incMaybe (Just x) = Just (x +1)
incMaybe _ = Nothing

incM mx
 = mx >>= \x ->
 return (x + 1)

addM mx my
 = mx >>= \x ->
 my >>= \y ->
 return (x + y)

addM mx my = do
 x <- mx
 y <- my
 return (x + y)

