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Functors, Applicative and Monads



Data constructors revisited

  data Point = Point Float Float 
 

 Point :: Float -> Float -> Point 
  
 Point 0.0 1.25 :: Point 



Data constructors revisited

  data Shape  
     = Circle  Point Float 
     | Path   [Point] 
 

 Circle :: Point   -> Float -> Shape 
 Path   :: [Point]          -> Shape 



Data constructors revisited

  data Tree a 
     = Leaf 
     | Node a (Tree a) (Tree a) 
 

 Leaf ::                               Tree a 
 Node :: a -> (Tree a) -> (Tree a) -> (Tree a) 



Data constructors revisited

  data Either a b 
     = Left  a 
     | Right b 
 

  Left  :: a -> Either a b 
  Right :: b -> Either a b 
 



Data constructors revisited

  data Maybe a 
     = Nothing 
     | Just a 
 

  Nothing ::      Maybe a 
  Just    :: a -> Maybe a 



Type Constructors

• Data constructors map values to values:

True

False

Just True

Just False

Just  :: a -> Maybe a

Bool
Maybe Bool

types a sets of values



Maybe :: * -> *

Type Constructors

• Type constructor map types to type:

Maybe

Bool

Maybe Int

Char

Float

…

Maybe Bool

Maybe (Maybe Int)

Maybe Char

Maybe Float
…

kinds are sets of types* *



Kinds

[Int]

Maybe Bool

Char

Float

Bool
…

*

Maybe

Tree [ ]

…

* -> *
(,)

* -> * -> *

Either ->



Generalising map

• map on lists:

map :: (a -> b) -> [a] -> [b] 
map f [] = [] 
map f (x : xs)  = f x : map f xs 
 

• map for other unary type constructors:

treeMap :: (a -> b) -> Tree a -> Tree b 
treeMap f Leaf = Leaf 
treeMap f (Node x leftSubtree rightSubtree)  
  = Node f x (treeMap f leftSubtree)  
             (treeMap f rightSubtree) 
 



Generalising map

• map on the Maybe type:

maybeMap :: (a -> b) -> Maybe a -> Maybe b 
maybeMap f Nothing  = Nothing 
maybeMap f (Just x) = Just (f x) 
 

        fmap :: (a -> b) ->  f a -> f b 



Functors

• We have seen how type classes can be used to group types according to the 
operations supported on their values:

class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 

instance Eq Bool where 
  (==) True   True  = True 
  (==) False  False = True 
  (==) _      _     = False 
  (/=) b1     b2    = not (b1 == b2) 

a :: *



Functors

• We can also use type classes to group type constructors:

class Functor f where 
   fmap :: (a -> b) -> f a -> f b 

instance Functor Tree where 
   fmap f Leaf  =  Leaf 
   fmap f (Node a t1 t2)  
      = Node (f a) (fmap f t1) (fmap f t2)  

f:: * -> *



What properties should map have?

• Should leave the structure intact:

       fmap id xs  == xs 

    fmap (f . g) xs  == ((fmap f) . (fmap g)) xs 

• These properties are not enforced by the compiler


- it’s the programmers responsibility to ensure


- these are quickcheckable properties, but proofs are often straight forward


- these abstractions are very useful to understand code



Applicative

• Applicative are functors with two additional operations:

 class Functor f => Applicative f where 
   
    pure  :: a -> f a 
   (<*>)  :: f (a -> b) -> f a -> f b 

http://support.hfm.io/1.6/api/base-4.9.1.0/Prelude.html#t:Functor


Applicative

• Properties

                pure id <*> v == v 

   pure (.) <*> u <*> v <*> w == u <*> (v <*> w) 

            pure f <*> pure x == pure (f x) 
   
                 u <*> pure y == pure ($ y) <*> u 

https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Data-Function.html#v:id
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
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https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:pure
https://hackage.haskell.org/package/base-4.11.0.0/docs/Data-Function.html#v:-36-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#v:-60--42--62-


Monads

• Monads

 class Applicative m => Monad m where 

   (>>=)  :: m a -> (a -> m b) -> m b      
   return :: a -> m a 
    

https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Applicative.html#t:Applicative


Monads

• Properties

               
              return a >>= k  ==  k a                 

                m >>= return  ==  m 
   
     m >>= (\x -> k x >>= h)  ==  (m >>= k) >>= h 

https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:return
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:return
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.11.0.0/docs/Control-Monad.html#v:-62--62--61-


Monads

• Do-notation:

incMaybe :: Num a => Maybe a -> Maybe a               
incMaybe (Just x) = Just (x +1) 
incMaybe _        = Nothing 

incM mx  
  = mx >>=  \x -> 
    return (x + 1)  

addM mx my  
  = mx >>= \x -> 
    my >>= \y ->  
    return (x + y)  

addM mx my = do  
  x <- mx 
  y <- my 
  return (x + y) 


